7 research outputs found

    Reconstruction statistique 3D à partir d’un faible nombre de projections : application : coronarographie RX rotationnelle

    Get PDF
    The problematic of this thesis concerns the statistical iterative 3D reconstruction of coronary tree from a very few number of coronary angiograms (5 images). During RX rotational angiographic exam, only projections corresponding to the same cardiac phase are selected in order to check the condition of space and time non-variability of the object to reconstruct (static reconstruction). The limited number of projections complicates the reconstruction, considered then as an illness inverse problem. The answer to a similar problem needs a regularization process. To do so, we choose baysian formalism considering the reconstruction as a random field maximizing the posterior probability (MAP), composed by quadratic likelihood terms (attached to data) and Gibbs prior (prior markovian based on a partial interpretation of the object to reconstruct). The MAP maximizing allowed us using a numerical optimization algorithm, to introduce a smoothing constraint and preserve the edges on the reconstruction while choosing wisely the potential functions associated to prior energy. In this paper, we have discussed in details the three components of efficient statistical reconstruction MAP, which are : 1- the construction of precise physical model of acquisition process; 2- the selection of an appropriate prior model; and 3- the definition of an efficient iterative optimization algorithm. This discussion lead us to propose two iterative algorithms MAP, MAP-MNR and MAP-ARTUR-GC, which we have tested and evaluated on realistic simulated data (Patient data from 64-slice CT).La problématique de cette thèse concerne la reconstruction statistique itérative 3D de l'arbre coronaire, à partir d'un nombre très réduit d'angiogrammes coronariens (5 images). Pendant un examen rotationnel d'angiographie RX, seules les projections correspondant à la même phase cardiaque sont sélectionnées afin de vérifier la condition de non variabilité spatio-temporelle de l'objet à reconstruire (reconstruction statique). Le nombre restreint de projections complique cette reconstruction, considérée alors comme un problème inverse mal posé. La résolution d'un tel problème nécessite une procédure de régularisation. Pour ce faire, nous avons opté pour le formalisme bayésien en considérant la reconstruction comme le champ aléatoire maximisant la probabilité a posteriori (MAP), composée d'un terme quadratique de vraisemblance (attache aux données) et un a priori de Gibbs (à priori markovien basé sur une interprétation partielle de l'objet à reconstruire). La maximisation MAP adoptant un algorithme d'optimisation numérique nous a permis d'introduire une contrainte de lissage avec préservation de contours des reconstructions en choisissant adéquatement les fonctions de potentiel associées à l'énergie à priori. Dans ce manuscrit, nous avons discuté en détail des trois principales composantes d'une reconstruction statistique MAP performante, à savoir (1) l'élaboration d'un modèle physique précis du processus d'acquisition, (2) l'adoption d'un modèle à priori approprié et (3) la définition d'un algorithme d'optimisation itératif efficace. Cette discussion nous a conduit à proposer deux algorithmes itératifs MAP, MAP-MNR et MAP-ARTUR-GC, que nous avons testés et évalués sur des données simulées réalistes (données patient issues d'une acquisition CT- 64 multi-barrettes)

    Object-based 3D binary reconstruction from sparse projections in cone beam CT: Comparison of three projection operators

    No full text
    International audienceWe present herein a level set approach to the X-ray tomography problem with sparse projection data and study the impact of the projection operator on the binary reconstruction accuracy and computation time. The comparison is carried out on three projectors: the Separable Footprint (Trapeze-Trapeze, SF-TT) [3], a classical Raydriven (RD) and a Simplified version of the Distance-Driven (SDD) projector respectively. The performance, are evaluated for each operator, on a binary 3D Shepp-Logan phantom by varying the number of projections from 5 to 13, and considering noise free and noisy cone beam projection data

    Reconstruction 3d Des Artères Coronaires En Imagerie Rotationnelle Rx

    No full text
    National audienceNous présentons une méthode de reconstruction 3D des artères coronaires à partir de 4 projections acquises en imagerie rotationnelle R-X. L'approche retenue considère un problème d'optimisation d'une fonction "objectif", en se basant sur un estimateur Bayésien (MAP : Maximum à postériori) et un modèle de distribution des données de projection de type Poisson. Le problème étant sous déterminé, nous introduisons un a priori afin d'améliorer la convergence de l'algorithme. Trois fonctions de régularisation sont ainsi considérées de type normes L0, L1 et L2 respectivement. Les algorithmes ont été testés sur des séquences de projections simulées à partir de séquences dynamiques d'arbres coronaires 3D extraits à partir d'examens acquis sur un scanner hélicoïdal multibarettes

    Sparse reconstruction from a limited projection number of the coronary artery tree in X-ray rotational imaging

    Get PDF
    International audienceThis paper deals with the 3D reconstruction of sparse data in X-ray rotational imaging. Due to the cardiac motion, the number of available projections for this reconstruction is equal to four, which leads to a strongly undersampled reconstruction problem. We address thus this illness problem through a regularized iterative method. The whole algorithm is divided into two steps. Firstly, a minimal path segmentation step extracts artery tree boundaries. Secondly, a MAP reconstruction comparing L0-norm and L1-norm priors is applied on this extracted coronary tree. The reconstruction optimization process relies on a separable paraboloidal (SPS) algorithm. Some preliminary results are provided on simulated rotational angiograms

    3D statistical reconstruction from a small number of projections. application : XR rotational coronarography

    No full text
    La problématique de cette thèse concerne la reconstruction statistique itérative 3D de l'arbre coronaire, à partir d'un nombre très réduit d'angiogrammes coronariens (5 images). Pendant un examen rotationnel d'angiographie RX, seules les projections correspondant à la même phase cardiaque sont sélectionnées afin de vérifier la condition de non variabilité spatio-temporelle de l'objet à reconstruire (reconstruction statique). Le nombre restreint de projections complique cette reconstruction, considérée alors comme un problème inverse mal posé. La résolution d'un tel problème nécessite une procédure de régularisation. Pour ce faire, nous avons opté pour le formalisme bayésien en considérant la reconstruction comme le champ aléatoire maximisant la probabilité a posteriori (MAP), composée d'un terme quadratique de vraisemblance (attache aux données) et un a priori de Gibbs (à priori markovien basé sur une interprétation partielle de l'objet à reconstruire). La maximisation MAP adoptant un algorithme d'optimisation numérique nous a permis d'introduire une contrainte de lissage avec préservation de contours des reconstructions en choisissant adéquatement les fonctions de potentiel associées à l'énergie à priori. Dans ce manuscrit, nous avons discuté en détail des trois principales composantes d'une reconstruction statistique MAP performante, à savoir (1) l'élaboration d'un modèle physique précis du processus d'acquisition, (2) l'adoption d'un modèle à priori approprié et (3) la définition d'un algorithme d'optimisation itératif efficace. Cette discussion nous a conduit à proposer deux algorithmes itératifs MAP, MAP-MNR et MAP-ARTUR-GC, que nous avons testés et évalués sur des données simulées réalistes (données patient issues d'une acquisition CT- 64 multi-barrettes).The problematic of this thesis concerns the statistical iterative 3D reconstruction of coronary tree from a very few number of coronary angiograms (5 images). During RX rotational angiographic exam, only projections corresponding to the same cardiac phase are selected in order to check the condition of space and time non-variability of the object to reconstruct (static reconstruction). The limited number of projections complicates the reconstruction, considered then as an illness inverse problem. The answer to a similar problem needs a regularization process. To do so, we choose baysian formalism considering the reconstruction as a random field maximizing the posterior probability (MAP), composed by quadratic likelihood terms (attached to data) and Gibbs prior (prior markovian based on a partial interpretation of the object to reconstruct). The MAP maximizing allowed us using a numerical optimization algorithm, to introduce a smoothing constraint and preserve the edges on the reconstruction while choosing wisely the potential functions associated to prior energy. In this paper, we have discussed in details the three components of efficient statistical reconstruction MAP, which are : 1- the construction of precise physical model of acquisition process; 2- the selection of an appropriate prior model; and 3- the definition of an efficient iterative optimization algorithm. This discussion lead us to propose two iterative algorithms MAP, MAP-MNR and MAP-ARTUR-GC, which we have tested and evaluated on realistic simulated data (Patient data from 64-slice CT)

    Strategy of computed tomography sinogram inpainting based on sinusoid-like curve decomposition and eigenvector-guided interpolation.

    No full text
    International audienceProjection incompleteness in x-ray computed tomography (CT) often relates to sparse sampling or detector gaps and leads to degraded reconstructions with severe streak and ring artifacts. To suppress these artifacts, this study develops a new sinogram inpainting strategy based on sinusoid-like curve decomposition and eigenvector-guided interpolation, where each missing sinogram point is considered located within a group of sinusoid-like curves and estimated from eigenvector-guided interpolation to preserve the sinogram texture continuity. The proposed approach is evaluated on real two-dimensional fan-beam CT data, for which the projection incompleteness, due to sparse sampling and symmetric detector gaps, is simulated. A Compute Unified Device Architecture (CUDA)-based parallelization is applied on the operations of sinusoid fittings and interpolations to accelerate the algorithm. A comparative study is then conducted to evaluate the proposed approach with two other inpainting methods and with a compressed sensing iterative reconstruction. Qualitative and quantitative performances demonstrate that the proposed approach can lead to efficient artifact suppression and less structure blurring
    corecore